Reprogramming progeny cells of embryonic RPE to produce photoreceptors: development of advanced photoreceptor traits under the induction of neuroD.

نویسندگان

  • Lina Liang
  • Run-Tao Yan
  • Xiumei Li
  • Melissa Chimento
  • Shu-Zhen Wang
چکیده

PURPOSE In examining the prospect of producing functional photoreceptors by reprogramming the differentiation of RPE progeny cells, this study was conducted to investigate whether reprogrammed cells can develop highly specialized ultrastructural and physiological traits that characterize retinal photoreceptors. METHODS Cultured chick RPE cells were reprogrammed to differentiate along the photoreceptor pathway by ectopic expression of neuroD. Cellular ultrastructure was examined with electron microscopy. Cellular physiology was studied by monitoring cellular free calcium (Ca(2+)) levels in dark-adapted cells in response to light and in light-bleached cells in response to 9-cis-retinal. RESULTS Reprogrammed cells were found to localize red opsin protein appropriately to the apex. These cells developed inner segments rich in mitochondria, and while in culture, some formed rudimentary outer segments, analogous to those of developing photoreceptors in the retina. In response to light, reprogrammed cells reduced their Ca(2+) levels, as observed with developing retinal photoreceptors in culture. Further, on exposure to 9-cis-retinal, the light-bleached, reprogrammed cells increased their Ca(2+) levels, reminiscent of visual cycle recovery. CONCLUSIONS These results indicate the potential of reprogrammed cells to develop advanced ultrastructural and physiological traits of photoreceptors and point to reprogramming progeny cells of embryonic RPE as a possible alternative in producing developing photoreceptors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Retinal Pigment Epithelium: a Convenient Source of New Photoreceptor cells?

Recent success in restoring visual function through photoreceptor replacement in mouse models of photoreceptor degeneration intensifies the need to generate or regenerate photoreceptor cells for the ultimate goal of using cell replacement therapy for blindness caused by photoreceptor degeneration. Current research on deriving new photoreceptors for replacement, as regenerative medicine in gener...

متن کامل

Photoreceptor-like cells from reprogramming cultured mammalian RPE cells

PURPOSE Previous studies showed that chick retinal pigment epithelium (RPE) cells can be reprogrammed by a specific gene to take on the path of photoreceptor differentiation. In this study, we tested whether this reprogramming scheme could be applied to mammalian RPE cells. METHODS Human RPE cell lines ARPE-19, a spontaneously transformed line of RPE cells derived from a 19-year-old person, a...

متن کامل

Exploring RPE as a source of photoreceptors: differentiation and integration of transdifferentiating cells grafted into embryonic chick eyes.

PURPOSE To study the possibility of generating photoreceptors through programming RPE transdifferentiation by examining cell differentiation after transplantation into the developing chick eye. METHODS RPE was isolated, and the cells were dissociated, cultured, and guided to transdifferentiate by infection with retrovirus expressing neuroD (RCAS-neuroD), using RCAS-green fluorescence protein ...

متن کامل

Using neurogenin to reprogram chick RPE to produce photoreceptor-like neurons.

PURPOSE One potential therapy for vision loss from photoreceptor degeneration is cell replacement, but this approach presents a need for photoreceptor cells. This study explores whether the retinal pigment epithelium (RPE) could be a convenient source of developing photoreceptors. METHODS The RPE of chick embryos was subjected to reprogramming by proneural genes neurogenin (ngn)1 and ngn3. Th...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 49 9  شماره 

صفحات  -

تاریخ انتشار 2008